Home ยป YS

YS

by LearnersUpdate

Can you SOLVE:

\(\frac{4!}{3!-2!}\) ?

Can you simplify: \(\frac{3^{x}\times3^{2x}}{9^x}\) ?

\({\text{Evaluate: } \frac{7\sqrt{2}}{4-\sqrt{3}}}\)

\(\text{Evaluate: } \frac{6\sqrt{5}}{5-\sqrt{3}}\)

\(\text{Evaluate: } \frac{3+\sqrt{6}}{\sqrt{4}-\sqrt{2}}\)

\(\text{Evaluate: } \frac{\sqrt{5}}{7-\sqrt{3}}\)

\(\text{Evaluate: } \left(6+\sqrt{13}\right)\left(6-\sqrt{13}\right)\)

\(\text{Evaluate: } \left(3+\sqrt{11}\right)\left(3-\sqrt{11}\right)\)

\(\text{Evaluate: } \left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)\)

\(\text{Evaluate: } \left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)\)

\(\text{Evaluate: } \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)

Expand and simplify: \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\)

\(\text{Simplify: } \sqrt[3]{64}\)

\(\text{Simplify the surd: } \sqrt{45}\)

\(\text{Simplify: } 7\sqrt{28} + 4\sqrt{7}\)

\(\text{Rationalize the denominator: } \frac{5}{\sqrt{3}}\)

\(\text{Perform the operation: } 6\sqrt{7} - 3\sqrt{7}\)

\(\text{Simplify: } 3\sqrt{12} - 2\sqrt{3}\)

\(\text{Rationalize the denominator: } \frac{4}{\sqrt{7}}\)

Perform the operation:

\( 5\sqrt{5} + 7\sqrt{5}\)

\(\text{Simplify the surd: } \sqrt{32}\)

\(\text{Simplify the surd: } \sqrt{27}\)

\(\text{Simplify: } 5\sqrt{8} - 3\sqrt{2}\)

\(\text{Rationalize the denominator: } \frac{3}{\sqrt{5}}\)

Perform the operation: \( 2\sqrt{3} + 4\sqrt{3}\)

\(\text{Simplify the surd: } \sqrt{18}\)

\(\text{Simplify the surd: } \sqrt{50}\)

Solve for \(a\) and \(b\):

\( a - b = 5 \) and \( 2a + b = 4 \)

Solve for \(x\) and \(y\):

\( 2x + 3y = 9 \) and \( x - 2y = 1 \)

Solve for \(x\) and \(y\):

\( x - y = 1\) and \( x + y = 7 \)

Solve for \(x\) and \(y\):

\( 5x - 2y = 11\) andย  \( x + y = 5 \)

Solve for \(x\) and \(y\):

\( 2x + y = 9 \) and \( -3x - y = -11\)

If \(y = x + 7\) and \(k = 2y\), what is \(k\) when \(x = 5\)?

Given \(a = b + c\) and \(b = 2c - 4\), express \(a\) in terms of \(c\).

Substitute \(x = 3\) into \(f(x) = 2x^2 + 4x - 5\).

If \(z = 4x + 2\) and \(x = 3y + 7\), what is \(z\) in terms of \(y\)?

Given \(x = 2y - 3\), what is \(x\) when \(y = 5\)?

Find:

\( \int (6x^4 - 4x^3 + 5x^2 - x + 2) \, dx\)

\(\text{Find } \int (3x^3 - 5x^2 + 4x - 8) \, dx\)

Find:

\( \int (x^5 - 4x^4 + 3x^3 - 2x^2 + x) \, dx\)

\(\text{Find } \int (-3x^3 + 2x^2 + x - 5) \, dx\)

\(\text{Find } \int (2x^2 + 7x - 4) \, dx\)

\(\text{Find } \int (4x^4 - 3x^3 + x^2 + 1) \, dx\)

\(\text{Find } \int (x^3 - 7x + 10) \, dx\)

\(\text{Find } \int (5x^2 - 4x + 9) \, dx\)

Find \( \int (-2x^5 + 6x^4 - x^3 + 5) \, dx\)

\(\text{Find } \int (x^4 + 3x^3 - 2x^2 + 7) \, dx\)

Find \(\frac{dy}{dx}\) given that:

\(y = 6x^4 - 4x^3 + 5x^2 - x + 2\)

Find \( f'(x) \)

if \(f(x) = 3x^3 - 5x^2 + 4x - 8\)

Find \( f'(x)\) if

\(f(x) = x^5 - 4x^4 + 3x^3 - 2x^2 + x\)

Find \( \frac{dy}{dx}\)

if \( y = -3x^3 + 2x^2 + x - 5\)

\(\text{Find } f'(x) \text{ if } f(x) = 2x^2 + 7x - 4\)

Find \( f'(x)\) if

\( f(x) = 4x^4 - 3x^3 + x^2 + 1\)

\(\text{Find } f'(x) \text{ if } f(x) = x^3 - 7x + 10\)

\(\text{Find } f'(x) \text{ if } f(x) = 5x^2 - 4x + 9\)

Find \( f'(x)\) if

\(f(x) = -2x^5 + 6x^4 - x^3 + 5\)

Find \( f'(x)\) if

\( f(x) = x^4 + 3x^3 - 2x^2 + 7\)

\(Simplify:ย  \sqrt{250}\)

 

Rewrite in simplified form: \(d^{5} \times d^{-5}\)

Simplify: \(y^4 \times y^2\)

 

Simplify: \(8^2 \times 8^3\)

Evaluate: \(6^{-1}\)

Simplify: \(\frac{5^6}{5^4}\)

What is the value of: \(4^{-2}\)?

Evaluate: \(3^0\)

Simplify: \(2^3 \times 2^4\)

Evaluate the integral:

\(\int (x^2 + 3x) \, dx\)

Simplify the following expression: \(\sqrt{50} + \sqrt{27}\)

Your score is

The average score is 0%

0%

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept

Privacy & Cookies Policy