Home » The Science Chef SFH1.0 Summer Mathematics Examination

The Science Chef SFH1.0 Summer Mathematics Examination

by LearnersUpdate
 
  • This examination will last for 2 hours.
  • It consists of 60 objective questions.
  • Ensure you have all writing materials for rough calculations before clicking the “Start Exam” button.
  • A brief revision of major topics covered during the weekly summer lesson has been provided below. Be free to go through the links before you begin the exam proper. 

Learnersupdate logo

Simplify the following expression: \(\sqrt{50} + \sqrt{27}\)

Can you simplify: \(\frac{3^{x}\times3^{2x}}{9^x}\) ?

Simplify: \(\frac{5^6}{5^4}\)

What is the value of: \(4^{-2}\)?

Evaluate: \(3^0\)

Simplify: \(2^3 \times 2^4\)

Simplify: \(8^2 \times 8^3\)

Simplify: \(y^4 \times y^2\)

 

Rewrite in simplified form: \(d^{5} \times d^{-5}\)

\(Simplify:  \sqrt{250}\)

 

Solve for \(x\) and \(y\):

\( 2x + 3y = 9 \) and \( x – 2y = 1 \)

Solve for \(x\) and \(y\):

\( x – y = 1\) and \( x + y = 7 \)

Solve for \(x\) and \(y\):

\( 5x – 2y = 11\) and  \( x + y = 5 \)

Solve for \(x\) and \(y\):

\( 2x + y = 9 \) and \( -3x – y = -11\)

Given \(a = b + c\) and \(b = 2c – 4\), express \(a\) in terms of \(c\).

Substitute \(x = 3\) into \(f(x) = 2x^2 + 4x – 5\).

If \(z = 4x + 2\) and \(x = 3y + 7\), what is \(z\) in terms of \(y\)?

Given \(x = 2y – 3\), what is \(x\) when \(y = 5\)?

Find:

\( \int (6x^4 – 4x^3 + 5x^2 – x + 2) \, dx\)

\(\text{Find } \int (3x^3 – 5x^2 + 4x – 8) \, dx\)

Find:

\( \int (x^5 – 4x^4 + 3x^3 – 2x^2 + x) \, dx\)

\(\text{Find } \int (-3x^3 + 2x^2 + x – 5) \, dx\)

\(\text{Find } \int (2x^2 + 7x – 4) \, dx\)

\(\text{Find } \int (4x^4 – 3x^3 + x^2 + 1) \, dx\)

\(\text{Find } \int (x^3 – 7x + 10) \, dx\)

\(\text{Find } \int (5x^2 – 4x + 9) \, dx\)

Find \( \int (-2x^5 + 6x^4 – x^3 + 5) \, dx\)

\(\text{Find } \int (x^4 + 3x^3 – 2x^2 + 7) \, dx\)

Find \(\frac{dy}{dx}\) given that:

\(y = 6x^4 – 4x^3 + 5x^2 – x + 2\)

Find \( f'(x)\) if

\(f(x) = x^5 – 4x^4 + 3x^3 – 2x^2 + x\)

Find \( \frac{dy}{dx}\)

if \( y = -3x^3 + 2x^2 + x – 5\)

\(\text{Find } f'(x) \text{ if } f(x) = 2x^2 + 7x – 4\)

Find \( f'(x)\) if

\( f(x) = 4x^4 – 3x^3 + x^2 + 1\)

\(\text{Find } f'(x) \text{ if } f(x) = x^3 – 7x + 10\)

\(\text{Find } f'(x) \text{ if } f(x) = 5x^2 – 4x + 9\)

Find \( f'(x)\) if

\( f(x) = x^4 + 3x^3 – 2x^2 + 7\)

\({\text{Evaluate: } \frac{7\sqrt{2}}{4-\sqrt{3}}}\)

\(\text{Evaluate: } \frac{6\sqrt{5}}{5-\sqrt{3}}\)

\(\text{Evaluate: } \frac{3+\sqrt{6}}{\sqrt{4}-\sqrt{2}}\)

\(\text{Evaluate: } \frac{\sqrt{5}}{7-\sqrt{3}}\)

\(\text{Evaluate: } \left(6+\sqrt{13}\right)\left(6-\sqrt{13}\right)\)

\(\text{Evaluate: } \left(3+\sqrt{11}\right)\left(3-\sqrt{11}\right)\)

\(\text{Evaluate: } \left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)\)

\(\text{Evaluate: } \left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)\)

\(\text{Evaluate: } \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)

Expand and simplify: \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\)

\(\text{Simplify: } \sqrt[3]{64}\)

\(\text{Simplify the surd: } \sqrt{45}\)

\(\text{Simplify: } 7\sqrt{28} + 4\sqrt{7}\)

\(\text{Rationalize the denominator: } \frac{5}{\sqrt{3}}\)

\(\text{Perform the operation: } 6\sqrt{7} – 3\sqrt{7}\)

\(\text{Simplify: } 3\sqrt{12} – 2\sqrt{3}\)

\(\text{Rationalize the denominator: } \frac{4}{\sqrt{7}}\)

Perform the operation:

\( 5\sqrt{5} + 7\sqrt{5}\)

\(\text{Simplify the surd: } \sqrt{32}\)

\(\text{Simplify the surd: } \sqrt{27}\)

\(\text{Simplify: } 5\sqrt{8} – 3\sqrt{2}\)

\(\text{Rationalize the denominator: } \frac{3}{\sqrt{5}}\)

Perform the operation: \( 2\sqrt{3} + 4\sqrt{3}\)

\(\text{Simplify the surd: } \sqrt{18}\)

Your score is

Share your score with friends!

LinkedIn Facebook

0%

How would you rate this quiz?

Thanks for your opinion.

REVISION

  • Use the links below to navigate major topics covered during the weekly summer lesson.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept

Privacy & Cookies Policy